INTEGRALS CONTAINING $\displaystyle \frac{1}{\cosh ax}$

1.
$\displaystyle\int\displaystyle \frac{dx}{\cosh ax}=\displaystyle \frac{2}{a}\tan^{-1}e^{ax}$

2.
$\displaystyle\int\displaystyle \frac{dx}{\cosh^2 ax}=\displaystyle \frac{\tanh ax}{a}$

3.
$\displaystyle\int\displaystyle \frac{dx}{\cosh^3 ax}=\displaystyle \frac{\tanh ax}{2a\cosh ax}+\displaystyle \frac{1}{2a}\tan^{-1}\sinh ax$

4.
$\displaystyle\int\displaystyle \frac{\tanh ax}{\cosh^n ax}dx=-\displaystyle \frac{1}{na\cosh^n ax}$

5.
$\displaystyle\int\cosh ax dx=\displaystyle \frac{\sinh ax}{a}$

6.
$\displaystyle\int\displaystyle \frac{x dx}{\cosh ax}=\displaystyle \frac{1}{a^2...
...displaystyle \frac{(-1)^n E_n(ax)^{2n+2}}{(2n+2)(2n)!}+\cdot\cdot\cdot \right\}$

where the constants En are the Euler's numbers.

7.
$\displaystyle\int\displaystyle \frac{x dx}{\cosh^2 ax}=\displaystyle \frac{x\tanh ax}{a}-\displaystyle \frac{1}{a^2}\ln\cosh ax$

8.
$\displaystyle\int\displaystyle \frac{dx}{x\cosh ax}=\ln x -\displaystyle \frac{...
...ax)^6}{4320}+ \cdot\cdot\cdot \displaystyle \frac{(-1)^n E_n(ax)^{2n}}{2n(2n)!}$

where the constants En are the Euler's numbers.

9.
$\displaystyle\int\displaystyle \frac{dx}{q+p/ \cosh ax}=\displaystyle \frac{x}{q}-\displaystyle \frac{p}{q}\int\displaystyle \frac{dx}{p+q\cosh ax}$

10.
$\displaystyle\int\displaystyle \frac{dx}{\cosh^n ax}=\displaystyle \frac{\tanh ...
...-2}ax)}+\displaystyle \frac{n-2}{n-1}\int\displaystyle \frac{dx}{\cosh^{n-2}ax}$

[Tables]

S.O.S MATHematics home page

Do you need more help? Please post your question on our S.O.S. Mathematics CyberBoard.

Copyright 1999-2017 MathMedics, LLC. All rights reserved.
Contact us
Math Medics, LLC. - P.O. Box 12395 - El Paso TX 79913 - USA
users online during the last hour