INTEGRALS CONTAINING eax

1.
$\displaystyle\int e^{ax} dx =\displaystyle \frac{e^{ax}}{a}$

2.
$\displaystyle\int xe^{ax}dx=\displaystyle \frac{e^{ax}}{a}\left(x-\displaystyle \frac{1}{a}\right)$

3.
$\displaystyle\int x^2 e^{ax}dx=\displaystyle \frac{e^{ax}}{a}\left(x^2-\displaystyle \frac{2x}{a}+\displaystyle \frac{2}{a^2}\right)$

4.
$\begin{array}{lcl}
\displaystyle\int x^n e^{ax}dx&=& \displaystyle \frac{x^n e^...
...2}}{a^2}-\cdot\cdot\cdot \displaystyle \frac{(-1)^n n!}{a^n}\right)
\end{array}$

5.
$\displaystyle\int\displaystyle \frac{e^{ax}}{x}dx=\ln x+\displaystyle \frac{ax}...
...\frac{(ax)^2}{2\cdot 2!}+\displaystyle \frac{(ax)^3}{3\cdot 3!}+\cdot\cdot\cdot$

6.
$\displaystyle\int\displaystyle \frac{e^{ax}}{x^n}dx=\displaystyle \frac{-e^{ax}...
...)x^{n-1}}+\displaystyle \frac{a}{n-1}\int\displaystyle \frac{e^{ax}}{x^{n-1}}dx$

7.
$\displaystyle\int\displaystyle \frac{dx}{p+qe^{ax}}=\displaystyle \frac{x}{p}-\displaystyle \frac{1}{ap}\ln (p+qe^{ax})$

8.
$\displaystyle\int\displaystyle \frac{dx}{(p+qe^{ax})^2}=\displaystyle \frac{x}{...
...displaystyle \frac{1}{ap(p+qe^{ax})}-\displaystyle \frac{1}{ap^2}\ln(p+qe^{ax})$

9.
$\displaystyle\int\displaystyle \frac{dx}{pe^{ax}+qe^{-ax}}=\left\{ \begin{array...
...style \sqrt{-q/p}}{e^{ax}+\displaystyle \sqrt{-q/p}}\right)
\end{array}\right. $

10.
$\displaystyle\int e^{ax}\sin bx dx=\displaystyle \frac{e^{ax}(a\sin bx -b\cos bx)}{a^2+b^2}$

11.
$\displaystyle\int e^{ax}\cos bx dx=e^{ax}\displaystyle \frac{(a\cos bx+b\sin bx)}{a^2+b^2}$

12.
$\displaystyle\int xe^{ax}\sin bx dx=\displaystyle \frac{xe^{ax}(a\sin bx -b\cos...
...splaystyle \frac{e^{ax}\left\{(a^2-b^2)\sin bx-2ab\cos bx\right\}}{(a^2+b^2)^2}$

13.
$\displaystyle\int xe^{ax}\cos bx dx=\displaystyle \frac{xe^{ax}(a\cos bx +b\sin...
...splaystyle \frac{e^{ax}\left\{(a^2-b^2)\cos bx+2ab\sin bx\right\}}{(a^2+b^2)^2}$

14.
$\displaystyle\int e^{ax}\ln xdx=\displaystyle \frac{e^{ax}\ln x}{a}-\displaystyle \frac{1}{a}\int\displaystyle \frac{e^{ax}}{x}dx$

15.
$\displaystyle\int e^{ax}\sin^n bxdx=\displaystyle \frac{e^{ax}\sin^{n-1}bx}{a^2...
...\cos bx) + \displaystyle \frac{n(n-1)b^2}{a^2+n^2b^2}\int e^{ax}\sin^{n-2}bx dx$

16.
$\displaystyle\int e^{ax}\cos^n bxdx=\displaystyle \frac{e^{ax}\cos^{n-1}bx}{a^2...
...\sin bx) + \displaystyle \frac{n(n-1)b^2}{a^2+n^2b^2}\int e^{ax}\cos^{n-2}bx dx$

[Tables]

S.O.S MATHematics home page

Do you need more help? Please post your question on our S.O.S. Mathematics CyberBoard.

Copyright 1999-2017 MathMedics, LLC. All rights reserved.
Contact us
Math Medics, LLC. - P.O. Box 12395 - El Paso TX 79913 - USA
users online during the last hour