Common Integrals

1.
$\displaystyle \int adx=ax$

2.
$\displaystyle \int af(x)dx=a \displaystyle \int f(x)dx$

3.
$\displaystyle \int \left( u \pm v \pm w \pm \cdots \right) dx =
\displaystyle \int udx \pm \displaystyle \int vdx \pm \displaystyle
\int wdx \pm \cdots $

4.
$\displaystyle \int udv = uv - \displaystyle \int vdu$

5.
$\displaystyle \int f(ax)dx = \displaystyle \frac{1}{a} \displaystyle
\int f(u)du$

6.
$\displaystyle \int F\{f(x)\}dx = \displaystyle \int F(u) \displaystyle
\frac{dx}{du}du = \displaystyle \int \displaystyle
\frac{F(u)}{f'(x)}du$

7.
$\displaystyle \int u^{n}du = \displaystyle \frac{u^{n+1}}{n+1}, n \neq -1$

8.
$\begin{array}{lcl}
\displaystyle \int\displaystyle \frac{du}{u} & = & \ln u \mb...
...or} \ln (-u) \mbox{ if} u<0 \\
& = & \ln \left\vert u \right\vert
\end{array}$

9.
$\displaystyle \int e^{u}du=e^{u}$

10.
$\displaystyle \int a^{u}du = \int e^{u \ln a}du = \displaystyle \frac{e^{u \ln a}}{\ln a} = \displaystyle \frac{a^{u}}{\ln a} , a >0, a \neq 1$

11.
$\displaystyle \int \sin u du = -\cos u$

12.
$\displaystyle \int \cos u du = \sin u$

13.
$\displaystyle \int \tan u du = \ln \sec u = -\ln \cos u$

14.
$\displaystyle \int \cot u du = \ln \sin u$

15.
$\displaystyle \int \sec u du = \ln (\sec u + \tan u) = \ln \tan \left( \displaystyle \frac{u}{2} + \displaystyle \frac{\pi}{4} \right)$

16.
$\displaystyle \int \csc u du = \ln (\csc u - \cot u) = \ln \tan \displaystyle \frac{u}{2}$

17.
$\displaystyle \int \sec ^{2} u du = \tan u$

18.
$\displaystyle \int \csc ^{2} u du = -\cot u$

19.
$\displaystyle \int \tan ^{2} u du = \tan u - u$

20.
$\displaystyle \int \cot ^{2} u du = -\cot u - u $

21.
$\displaystyle \int \sin ^{2} u du = \displaystyle \frac{u}{2} - \displaystyle \frac{\sin 2u}{4} = \displaystyle \frac{1}{2} (u-\sin u \cos u)$

22.
$\displaystyle \int \cos ^{2} u du = \displaystyle \frac{u}{2} + \displaystyle \frac{\sin 2u}{4} = \displaystyle \frac{1}{2} (u+\sin u \cos u)$

23.
$\displaystyle \int \sec u \tan u du = \sec u$

24.
$\displaystyle \int \csc u \cot u du = -\csc u $

25.
$\displaystyle \int \sinh u du = \cosh u$

26.
$\displaystyle \int \cosh u du = \sinh u$

27.
$\displaystyle \int \tanh u du = \ln \cosh u$

28.
$\displaystyle \int \coth u du = \ln \sinh u$

29.
$\displaystyle \int $sech $u du = \sin ^{-1}(\tanh u )$ or $2\tan ^{-1}e^{u}$

30.
$\displaystyle \int $csch $ u du = \ln \tanh \displaystyle \frac{u}{2}$ or $-\coth ^{-1}e^{u}$

31.
$\displaystyle \int $sech $^{2} u du = \tanh u $

32.
$\displaystyle \int $csch 2 u du =-coth u

33.
$\displaystyle \int\tanh ^{2} u du = u - \tanh u$

34.
$\displaystyle \int $coth 2 u du = u -coth u

35.
$\displaystyle \int\sinh ^{2} u du = \displaystyle \frac{\sinh 2u}{4} - \displaystyle \frac{u}{2} = \displaystyle \frac{1}{2}(\sinh u \cosh u- u)$

36.
$\displaystyle \int\cosh ^{2} u du = \displaystyle \frac{\sinh 2u}{4} + \displaystyle \frac{u}{2} = \displaystyle \frac{1}{2}(\sinh u \cosh u+ u)$

37.
$\displaystyle \int $sech $ u \tanh u du = - $sech u

38.
$\displaystyle \int $csch ucoth u du = -csch u

39.
$\displaystyle \int\displaystyle \frac{du}{u^{2}+a^{2}} = \displaystyle \frac{1}{a} \tan^{-1} \displaystyle \frac{u}{a}$

40.
$\displaystyle \int\displaystyle \frac{du}{u^{2} - a^{2}}= \displaystyle \frac{1...
...n \left( \displaystyle \frac{u - a}{u+a} \right) = - \displaystyle \frac{1}{a} $coth $ ^{-1} \displaystyle \frac{u}{a} , u^{2}>a^{2}$

41.
$\displaystyle \int\displaystyle \frac{du}{a^{2}-u^{2}}= \displaystyle \frac{1}{...
...= \displaystyle \frac{1}{a} \tanh ^{-1} \displaystyle \frac{u}{a} , u^{2}<a^{2}$

42.
$\displaystyle \int\displaystyle \frac{du}{\sqrt{a^{2}-u^{2}}} = \sin ^{-1} \displaystyle \frac{u}{a}$

43.
$\displaystyle \int\displaystyle \frac{du}{\sqrt{u^{2}+a^{2}}} = \ln \left( u+ \displaystyle\sqrt{u^{2} + a^{2}} \right)$ or $ \sinh ^{-1} \displaystyle \frac{u}{a}$

44.
$\displaystyle \int\displaystyle \frac{du}{\sqrt{u^{2}-a^{2}}} = \ln \left( u + \displaystyle\sqrt{u^{2} - a^{2}} \right)$

45.
$\displaystyle \int\displaystyle \frac{du}{u \sqrt{u^{2}-a^{2}}} = \displaystyle \frac{1}{a} \sec ^{-1} \left\vert \displaystyle \frac{u}{a} \right\vert$

46.
$\displaystyle \int\displaystyle \frac{du}{u \sqrt{u^{2}+a^{2}}}=-\displaystyle \frac{1}{a} \ln \left( \displaystyle \frac{a+\sqrt{u^{2}+a^{2}}}{u} \right)$

47.
$\displaystyle \int\displaystyle \frac{du}{u \sqrt{a^{2}-u^{2}}}=-\displaystyle \frac{1}{a} \ln \left( \displaystyle \frac{a+\sqrt{a^{2}-u^{2}}}{u} \right)$

48.
$\displaystyle \int f^{(n)}gdx = f^{(n-1)}g - f^{(n-2)}g' + f^{(n-3)} g'' - \cdots (-1)^{n} \displaystyle \int fg^{(n)}dx$

[Tables]

S.O.S MATHematics home page

Do you need more help? Please post your question on our S.O.S. Mathematics CyberBoard.

Copyright 1999-2017 MathMedics, LLC. All rights reserved.
Contact us
Math Medics, LLC. - P.O. Box 12395 - El Paso TX 79913 - USA
users online during the last hour