Precalculus Test Out Practice Exam

Part 2 Test 3 Time: 3 hours


  1. Find a rational function with vertical asymptotes at tex2html_wrap_inline314 and a horizontal asymptote at y=3.
    a)
    tex2html_wrap_inline318 .
    b)
    tex2html_wrap_inline320 .
    c)
    tex2html_wrap_inline322 .
    d)
    tex2html_wrap_inline324 .
    e)
    None of the above.

  2. Find the slant asymptote to tex2html_wrap_inline326 .
    a)
    f(x)=x+5.
    b)
    f(x)=2x-1.
    c)
    tex2html_wrap_inline332 .
    d)
    x+2.
    e)
    None of the above.

  3. Find the equation of a polynomial with zeros x=3 and x=3+2i.
    a)
    tex2html_wrap_inline340 .
    b)
    tex2html_wrap_inline342 .
    c)
    tex2html_wrap_inline344 .
    d)
    tex2html_wrap_inline346 .

  4. Find all the real zeros of the polynomial tex2html_wrap_inline348 . What is the largest rational zero?
    a)
    1.
    b)
    -1.
    c)
    3.
    d)
    tex2html_wrap_inline352 .
    e)
    None of the above.

  5. Divide tex2html_wrap_inline354 by tex2html_wrap_inline356 . What is the quotient?
    a)
    3x-2.
    b)
    3x+2.
    c)
    7x+1.
    d)
    7x-3.
    e)
    None of the above.

  6. Multiple and write the result in standard form: (10-8i)(2-3i).
    a)
    20-24i.
    b)
    12-11i.
    c)
    -4-46i.
    d)
    48-46i.
    e)
    None of the above.

  7. The path of a ball is given by

    displaymath310

    where y is the height in feet and x is the horizontal distance in feet. Find the maximum height of the ball.

    a)
    905 feet.
    b)
    50 feet.
    c)
    30 feet.
    d)
    800 feet.
    e)
    None of the above.

  8. Find the exact vertex of the parabola tex2html_wrap_inline380 .
    a)
    tex2html_wrap_inline382 .
    b)
    tex2html_wrap_inline384 .
    c)
    tex2html_wrap_inline386 .
    d)
    tex2html_wrap_inline388 .
    e)
    None of the above.

  9. Find the constant in the equation of the parabola with vertex (3,4) with point (1,8).
    a)
    13.
    b)
    1.
    c)
    -14.
    d)
    8.
    e)
    None of the above.

  10. What is the difference between the graphs of f(x) and

    displaymath311

    a)
    The graph of g(x) is the graph of f(x) shifted to the right 4 units, and up 3 units.
    b)
    The graph of g(x) is the graph of f(x) stretched downward 4 units, and 3 units to the right.
    c)
    The graph of g(x) is the graph of f(x) shifted to the left 4 units, and up 3 units.
    d)
    There is not enough information to answer this question.
    e)
    None of the above.

  11. What is the remainder when you divide tex2html_wrap_inline406 using synthetic division?
    a)
    -13.
    b)
    3.
    c)
    35.
    d)
    -19.
    e)
    None of the above.

  12. Find the upper bound of the zeros of tex2html_wrap_inline412 using synthetic division.
    a)
    15.
    b)
    1.
    c)
    3.
    d)
    5.
    e)
    None of the above.

  13. Simplify and write in standard form a+bi: tex2html_wrap_inline416 . Find the value of a.
    a)
    tex2html_wrap_inline418 .
    b)
    tex2html_wrap_inline420 .
    c)
    tex2html_wrap_inline422 .
    d)
    tex2html_wrap_inline424 .
    e)
    None of the above.

  14. How many real solutions does tex2html_wrap_inline426 have?
    a)
    1.
    b)
    2.
    c)
    3.
    d)
    4.
    e)
    None of these.

  15. Find the domain of the function tex2html_wrap_inline428 .
    a)
    tex2html_wrap_inline430 .
    b)
    (-1,1).
    c)
    All real numbers except tex2html_wrap_inline432 .
    d)
    tex2html_wrap_inline434 .
    e)
    None of the above.

  16. Find the horizontal asymptote of the function tex2html_wrap_inline428 .
    a)
    tex2html_wrap_inline438 .
    b)
    y=3.
    c)
    tex2html_wrap_inline442 .
    d)
    y=-1.
    e)
    None of the above.

  17. Find the vertical asymptote to the right of the x-axis of the function tex2html_wrap_inline428 .
    a)
    y=3.
    b)
    tex2html_wrap_inline450 .
    c)
    x=1.
    d)
    tex2html_wrap_inline438 .
    e)
    None of the above.

  18. Without using a calculator, approximate the value of tex2html_wrap_inline428 at x=10,000,000,000.
    a)
    30,000,000,000
    b)
    29,999,999,999
    c)
    9
    d)
    3
    e)
    None of the above.

  19. Let x be the amount (in hundredths of dollars) a company spends on advertising, and let P be the profit, where tex2html_wrap_inline464 . How much advertising will yield a maximum profit?
    a)
    $43,000.
    b)
    $ 2,000.
    c)
    $63,000.
    d)
    $ 1,000.
    e)
    None of the above.

  20. Given tex2html_wrap_inline466 , find tex2html_wrap_inline468 .
    a)
    tex2html_wrap_inline470 .
    b)
    tex2html_wrap_inline472 .
    c)
    tex2html_wrap_inline474 .
    d)
    1.
    e)
    None of the above.

  21. Is a circle a function?
    a)
    No.
    b)
    Yes.
    c)
    Depends on the radius.
    d)
    Yes, if the center is at the origin.
    e)
    None of the above.

  22. Is a parabola a one-to-one function?
    a)
    No.
    b)
    Yes.
    c)
    Depends on the axis of symetry.
    d)
    Yes, if the vertex is at the origin.
    e)
    None of the above.

  23. The formula tex2html_wrap_inline476 represents the volume of a cone. Find x in terms of the other variables.
    a)
    tex2html_wrap_inline480 .
    b)
    tex2html_wrap_inline482 .
    c)
    tex2html_wrap_inline484 .
    d)
    tex2html_wrap_inline486 .
    e)
    None of the above.

  24. Factor tex2html_wrap_inline488 . What is the sum of the factors?
    a)
    3x-9.
    b)
    3x+9.
    c)
    tex2html_wrap_inline494 .
    d)
    tex2html_wrap_inline496 .
    e)
    None of the above.

  25. On what interval(s) is the function tex2html_wrap_inline498 decreasing?
    a)
    tex2html_wrap_inline500 .
    b)
    tex2html_wrap_inline502 .
    c)
    tex2html_wrap_inline504 .
    d)
    tex2html_wrap_inline506 .

    e)
    None of the above.


If you would like to check your answers, click on Answer.

If you would like to practice on test out exams for Parts 1, 3 or 4, click on Menu. It will take you back to the original menu.


Fri Oct 10 12:36:23 MDT 1997

Copyright 1999-2017 MathMedics, LLC. All rights reserved.
Contact us
Math Medics, LLC. - P.O. Box 12395 - El Paso TX 79913 - USA
users online during the last hour