SOLVING TRIGONOMETRIC EQUATIONS


Note:

If you would like a review of trigonometry, click on trigonometry.



Solve for the real number x in the following equation.



$5\cos \left( \displaystyle \frac{2}{7}x\right) +8=-\cos \left( \displaystyle \frac{2}{7}x\right) +4$


Answers:        There are an infinite number of solutions: $x=\displaystyle \frac{7\pi }{2}
-\displaystyle \frac{7}{2}\cos ^{-1}\left( \displaystyle \frac{2}{3}\right) \pm n\left( 7\pi \right) $and $x=\displaystyle \frac{7\pi }{2}+\displaystyle \frac{7}{2}\cos ^{-1}\left( \displaystyle \frac{2}{3}\right) \pm
n\left( 7\pi \right) $ are the exact solutions, and $x\approx 8.0518339\pm
n\left( 7\pi \right) $ and $13.9393\pm n\left( 7\pi \right) $ are the approximate solutions.



Solution:


To solve for x, first isolate the cosine term.


\begin{eqnarray*}&& \\
5\cos \left( \displaystyle \frac{2}{7}x\right) +8 &=&-\c...
... \frac{2}{7}x\right) &=&-\displaystyle \frac{2}{3} \\
&& \\
&&
\end{eqnarray*}


If we restrict the domain of the cosine function to $0\leq \displaystyle \frac{2x}{7}\leq
\pi \rightarrow 0\leq x<\displaystyle \frac{7\pi }{2}$, we can use the arccos function to solve for x.

\begin{eqnarray*}\cos \left( \displaystyle \frac{2}{7}x\right) &=&-\displaystyle...
...c{7}{2}\cos ^{-1}\left( -\displaystyle \frac{2}{3}\right) \\
&&
\end{eqnarray*}



\begin{eqnarray*}&&\\
\mbox{ Reference Angle } &:&x^{\prime }=\displaystyle \fr...
...{ Reference Angle } &:&x^{\prime }\approx 2.943736 \\
&& \\
&&
\end{eqnarray*}


The cosine is negative in the second and third quadrant. The period of this function is $7\pi $. Divide the interval from 0 to $7\pi $ into four equal intervals representing quadrants: $\left[ 0,\displaystyle \frac{7\pi }{4}\right] ,\ \left[
\displaystyle \frac{7\...
...frac{21\pi
}{4}\right] ,\ \left[ \displaystyle \frac{21\pi }{4},7\pi \right] .$ The cosine is negative in the interval $\ \left[ \displaystyle \frac{7\pi }{4},\displaystyle \frac{7\pi }{2}\right] ,$and the solution is $x_{1}=\displaystyle \frac{7\pi }{2}-x^{\prime }=\displaystyle \frac{7\pi }{2}-\displaystyle \frac{
7}{2}\cos ^{-1}\left( \displaystyle \frac{2}{3}\right) .$ The cosine is also negative in the interval $\left[ \displaystyle \frac{7\pi }{2},\displaystyle \frac{21\pi }{4}\right] ,$ and the solution is $x_{2}=\displaystyle \frac{7\pi }{2}+x^{\prime }=\displaystyle \frac{7\pi }{2}+\displaystyle \frac{7}{2}
\cos ^{-1}\left( \displaystyle \frac{2}{3}\right) $



Since the period is $7\pi ,$ this means that the values will repeat every $7\pi $ radians. Therefore, the exact solutions are $x=\displaystyle \frac{7\pi }{2}
-\displaystyle \frac{7}{2}\cos ^{-1}\left( \displaystyle \frac{2}{3}\right) \pm n\left( 7\pi \right) $ and $x=
\displaystyle \frac{7\pi }{2}+\displaystyle \frac{7}{2}\cos ^{-1}\left( \displaystyle \frac{2}{3}\right) \pm n\left(
7\pi \right) .$ The approximate solutions are $x\approx 8.0518339\pm
n\left( 7\pi \right) $and $13.9393\pm n\left( 7\pi \right) $ where n is an integer.



These solutions may or may not be the answers to the original problem. You much check them, either numerically or graphically, with the original equation.



Numerical Check:


Check the answer .x=13.9393


Left Side: $\qquad 5\cos \left( \displaystyle \frac{2}{7}x\right) +8\approx 5\cos \left(
\displaystyle \frac{2}{7}\left( 13.9393\right) \right) +8\approx 4.666666$

Right Side:         $-\cos \left( \displaystyle \frac{2}{7}x\right) +4\approx -\cos \left(
\displaystyle \frac{2}{7}\left( 13.9393\right) \right) +4\approx 4.666666$

Since the left side equals the right side when you substitute 13.9393 for x, then 13.9393 is a solution.




Check the answer . x=8.0518339


Left Side: $\qquad 5\cos \left( \displaystyle \frac{2}{7}x\right) +8\approx 5\cos \left(
\displaystyle \frac{2}{7}\left( 8.0518339\right) \right) +8\approx 4.666666$

Right Side:         $-\cos \left( \displaystyle \frac{2}{7}x\right) +4\approx -\cos \left(
\displaystyle \frac{2}{7}\left( 8.0518339\right) \right) +4\approx 4.666666$

Since the left side equals the right side when you substitute 8.0518339for x, then 8.0518339 is a solution.




Graphical Check: Graph the equation $f(x)=6\cos \left( \displaystyle \frac{2}{7}x\right) +4.$ (Formed by subtracting the right side of the original equation from the left side of the original equation.



Note that the graph crosses the x-axis many times indicating many solutions.


Note the graph crosses at 8.05183396 (one of the solutions) as well as 13.9393. Since the period of the function is $7\pi \approx 21.991149$, the graph crosses again at 8.05183396+21.991149 = 30.04298 and 13.9393 + 21.991149 = 35.930449, etc.



If you would like to go back to the previous section, click on Previous.


If you would like to test yourself by working some problems similar to this example, click on problem.




If you would like to go back to the equation table of contents, click on Contents


[Algebra] [Trigonometry]
[Geometry] [Differential Equations]
[Calculus] [Complex Variables] [Matrix Algebra]

S.O.S MATHematics home page



Author: Nancy Marcus

Copyright © 1999-2024 MathMedics, LLC. All rights reserved.
Contact us
Math Medics, LLC. - P.O. Box 12395 - El Paso TX 79913 - USA
users online during the last hour